Banach Algebras of Pseudodifferential Operators and Their Almost Diagonalization
نویسندگان
چکیده
We define new symbol classes for pseudodifferential operators and investigate their pseudodifferential calculus. The symbol classes are parametrized by commutative convolution algebras. To every solid convolution algebraA over a lattice Λ we associate a symbol class M. Then every operator with a symbol in M is almost diagonal with respect to special wave packets (coherent states or Gabor frames), and the rate of almost diagonalization is described precisely by the underlying convolution algebra A. Furthermore, the corresponding class of pseudodifferential operators is a Banach algebra of bounded operators on L(R). If a version of Wiener’s lemma holds for A, then the algebra of pseudodifferential operators is closed under inversion. The theory contains as a special case the fundamental results about Sjöstrand’s class and yields a new proof of a theorem of Beals about the Hörmander class S 0,0.
منابع مشابه
Composition and Spectral Invariance of Pseudodifferential Operators on Modulation Spaces
We introduce new classes of Banach algebras of pseudodifferential operators with symbols in certain modulation spaces and investigate their composition and the functional calculus. Operators in these algebras possess the spectral invariance property on the associated family of modulation spaces. These results extend and contain Sjöstrand’s theory, and they are obtained with new phase space meth...
متن کامل2 00 6 Pseudodifferential Operators on Locally Compact Abelian Groups and Sjöstrand ’ s Symbol Class
We investigate pseudodifferential operators on arbitrary locally compact abelian groups. As symbol classes for the Kohn-Nirenberg calculus we introduce a version of Sjöstrand’s class. Pseudodifferential operators with such symbols form a Banach algebra that is closed under inversion. Since “hard analysis” techniques are not available on locally compact abelian groups, a new time-frequency appro...
متن کاملPseudodifferential Operators on Locally Compact Abelian Groups and Sjöstrand’s Symbol Class
We investigate pseudodifferential operators on arbitrary locally compact abelian groups. As symbol classes for the Kohn-Nirenberg calculus we introduce a version of Sjöstrand’s class. Pseudodifferential operators with such symbols form a Banach algebra that is closed under inversion. Since “hard analysis” techniques are not available on locally compact abelian groups, a new time-frequency appro...
متن کاملPOINT DERIVATIONS ON BANACH ALGEBRAS OF α-LIPSCHITZ VECTOR-VALUED OPERATORS
The Lipschitz function algebras were first defined in the 1960s by some mathematicians, including Schubert. Initially, the Lipschitz real-value and complex-value functions are defined and quantitative properties of these algebras are investigated. Over time these algebras have been studied and generalized by many mathematicians such as Cao, Zhang, Xu, Weaver, and others. Let be a non-emp...
متن کاملLinear operators of Banach spaces with range in Lipschitz algebras
In this paper, a complete description concerning linear operators of Banach spaces with range in Lipschitz algebras $lip_al(X)$ is provided. Necessary and sufficient conditions are established to ensure boundedness and (weak) compactness of these operators. Finally, a lower bound for the essential norm of such operators is obtained.
متن کامل